| CT助力高性能连续玻璃纤维增强PEEK复合材料的力学性能研究-天津三英精密仪器股份有限公司
对连续玻璃纤维增强PEEK复合材料(CGFRPC)的增材制造工艺、机械性能和电气性能进行了深入研究。为了获得高强度复合长丝,团队采用来自三英精密的高精度X射线三维显微镜,对各种牵引速度下制备的复合长丝进行无损扫描,对复合长丝的形态和微观结构进行了表征,研究了牵引速度对制备过程中复合长丝的形态和力学性能的影响。所获得的结果有望使CGFRPC的增材制造技术,满足于电子设备制造领域所需的高强度条件,该期刊的影响因子高达9.62!
1. 方法
首先在双螺杆挤出和浸渍设备上制备CGFRPC长丝。PEEK颗粒通过双螺杆挤出机塑化成熔融状态,然后进入并填充浸渍模具。同时,CGF丝束在牵引装置的牵引作用下进入具有弯曲流道的浸渍模具,经预热装置干燥后浸渍peek树脂。随后,CGFRPCs长丝通过出口模头被拉出,冷却后由卷绕装置收集。为了研究牵引速度对复合长丝的微观结构和力学性能的影响,以600Tex CGF为原料生产了6种不同牵引速度的复合长丝。以300Tex连续玻璃纤维为原料,以4.13 mm/s的牵引速度生产复合长丝,用于研究纤维尺寸对复合材料试样力学性能的影响。其中,制备的两种尺寸CGFRPC长丝的工艺参数见表1。
表1 300Tex和600Tex复合长丝的制备工艺参数
三英精密nanoVoxel-3000显微CT
2. 结果
如图2复合长丝剖面图所示,牵引速度从11.25 mm/s降低到2.77 mm/s的过程中,长丝外轮廓的圆度越来越好。由于较高的牵引速度不利于复合材料在出口模头处的充分聚束,故以较高牵引速度形成的长丝通常具有不规则形状,例如扁平形状。而较低牵引速度形成的长丝的外轮廓虽然不是标准的圆形,但它们接近于出口模具内孔的形状。
通过ImageJ 软件,计算出复合长丝在不同牵引速度下的物理参数(即纤维体积分数和孔隙率)如表2中所示。结果表明:纤维体积分数随着牵引速度的降低而减小,这是因为树脂对纤维的缓慢浸渍会导致长丝中的树脂增多。在这组实验中,纤维体积分数在32.19%~39.5%之间波动,最小值和最大值分别与4.13 mm/s和7.64 mm/s的长丝牵引速度相关。
表2 600Tex复合纤维在不同牵引速度下的物理参数
图3中展示了不同牵引速度下复合长丝内纤维、纤维/树脂复合材料和孔隙的三维分布情况,其中树脂/纤维复合材料和孔隙的分布图,取自复合长丝内部截取的长方体。
根据图3(a)可知,较高的牵引速度导致纤维在横截面上呈椭圆形分布,而在纵向截面上大多呈弯曲分布,从而在长丝内部产生一些孔隙。
当牵引速度降低到6.75 mm/s时(见图3(b)),纤维和树脂在长丝中的分布仍然不均匀,还可以检测到树脂集中区域和孔隙,长丝中处于弯曲状态的纤维数量在纵向截面中有所减少。尽管7.64 mm/s长丝中的纤维分布优于11.25 mm/s长丝中的纤维分布,但对于牵引速度低于7.64 mm/s的长丝,仍不能保证纤维分布地更均匀。
在牵引速度为4.13 mm/s时(见图3(c)),纤维在横截面上呈圆形分布,在纵向截面上呈较直分布,此时长丝内部未见孔隙。
图3 在牵引速度为(a) 11.25 mm/s (b) 6.75 mm/s (c) 4.13 mm/s时,复合纤维的三维分布(左)、纤维/树脂结合(中)和孔隙(右)图
为了对复合长丝中的孔隙进行三维形态表征,将含有明显孔隙的部分进行虚拟剖切,得到纵向剖面图(图4(a)和(b)),然后将纵向剖面图局部放大,以获得孔的形态(图4(c))。结果表明:复合长丝中的孔隙通常出现在纤维附近,且孔隙分布不连续、不均匀。由此推测:由于模具中的树脂分布不充分/不均匀,且纤维展开不充分,使得树脂与纤维相结合的位置容易出现气孔。
图4 (a)纵向剖切 (b)纵向剖面图(c)复合材料细丝孔隙形态
表3 600Tex复合纤维在不同牵引速度下的物理参数
结 论
本文设计了一种具有预热功能的双级加热喷嘴,以促进CGFRPCs长丝的熔解,提高试件的力学性能。为获得高强度复合材料长丝,借助三英精密的X射线三维CT,首次探讨了在制备过程中牵引速度对复合材料长丝的微观结构和力学性能的影响。